LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 **B.Sc.** DEGREE EXAMINATION – **ECONOMICS** THIRD SEMESTER – NOVEMBER 2011 ST 3103/3100 - RESOURCE MANAGEMENT TECHNIQUES Date : 09-11-2011 Dept. No. Max.: 100 Marks Time : 9:00 - 12:00 **SECTION - A** (10 x 2 = 20 marks)Answer ALL questions. Each carries TWO marks. 1. In a General Linear Programming Problem, define the following terms: (i) objective function (ii) constraints. 2. Explain the following terms used in the general LPP: (i) feasible solution (ii) optimum solution. 3. Explain slack and surplus variables. 4. Formulate a Transportation Problem as a LPP. 5. Present the Transportation Table for an m-origin, n-destination Transportation Problem and write its rim requirements. 6. Define a LOOP in a transportation table. 7. Give an example of an assignment problem. 8. Explain the following terms used in sequencing: (i) total elapsed time (ii) No passing rule. 9. Explain the following terms used in a PERT network: (i) optimistic time (ii) pessimistic time (iii) most likely time. 10. What are (i) set-up cost and (ii) ordering cost associated with inventories? SECTION - B Answer any FIVE questions. Each carries EIGHT marks. $(5 \times 8 = 40 \text{ marks})$ 11. A firm manufactures 3 products A, B, and C. The profit per unit sold of each product is Rs.3, Rs. 2, and Rs. 4 respectively. The time required to manufacture one unit of each of the three products and the daily capacity of the two machines P and Q is given in the table below: _____ Time per unit (minutes) Product Machine capacity Machine -----(minutes / day) В А С _____ Р 4 3 5 2,000 2 2 4 0 2,500 _____

It is required to determine the daily number of units to be manufactured for each product, so as to maximize the profit. However at least 100 A's, 200 B's, and 50 C's, but no more than 150 A's. Assume that all the units produced are consumed in the market. Formulate this problem as a LPP.

12. Solve the following LPP by graphical method: Minimize $z = 2x_1 + x_2$ subject to the constraints: $5x_1 + 10 x_2 \le 50$ $x_1 + x_2 \geq 1$ $x_2 \hspace{0.1in} \leq \hspace{-0.1in} 4$ $x_1, x_2 \geq 0.$ 13. Find all the basic solutions to the system of linear equations : $x_1 + 2x_2 + x_3 = 4$ $2x_1 + x_2 + 5x_3 = 5.$ Are the solutions degenerate? 14. Use simplex method to solve the following LPP: Maximize $z = 107 x_1 + x_2 + 2x_3$ subject to the constraints: $14x_1 + x_2 - 6x_3 + 3x_4 = 7$ $16x_1 + \frac{1}{2}x_2 - 6x_3 \leq 5$ $3x_1 - x_2 - x_3 \leq 0$ >0. X_1, X_2, X_3, X_4 15. Determine an initial feasible solution to the following transportation problem using the North-West Corner Rule: _____ Origin Destination Available ----- D_1 D_2 D_3 D_4 _____ 14 16 5 35 _____ 16. Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows: Job Persons _____ 3 4 2 1 · ~ · ·
 A
 8
 4

 B
 0
 9

 C
 3
 8

 D
 4
 2
 2 6 1 5 5 4 9 2 3 D 4 1 0 9 5 9 E 8

Determine the optimum assignment schedule.

17. In a factory, there are six jobs to perform, each of which should go through two machines A and B, in the order A, B. The processing timings (in hours) for the jobs are given here. Determine the sequence for performing the jobs that would minimize the total elapsed time. T. What is the value of T?

Job :	\mathbf{J}_1	J_2	J_3	\mathbf{J}_4	J_5	J_6
Machine A :	1	3	8	5	6	3
Machine B :	5	6	3	2	2	10

5

6

3

5

Activity A	Tieccui	ng Activi 			2 2	ration (Da l	50)
В					7	7	
С					6	<u>5</u>	
D		A, B			5		
E		A, B				7	
F		C, D, E				6	
G	1 6 1 (1	C, D, E			-	5	
Draw the network an	a fina the	project co	mpletion	ume.			
			SEC	CTION	– C		
answer any TWO question	ons. Each	carries T	WENTY	marks.			$(2 \times 20 = 40 \text{ mark})$
Maximize $z = 10x_2$							
 - x₁ + 5 x₁, x₂ (b) Write the characteristic 	$\begin{array}{l} x_2 \geq 0 \\ 5x_2 \geq 5 \\ 2 \geq 0. \end{array}$ seties of the				sportation	problem u	(10) (10) using Vogel's
x ₁ - x ₁ + 5 x ₁ , x ₂ (b) Write the characteris 0(a) Obtain initial basic for method.	$\begin{array}{l} x_2 \geq 0 \\ 5x_2 \geq 5 \\ 2 \geq 0. \end{array}$ seties of the	ution of t	he followi		sportation		(10) using Vogel's
$x_1 - x_1 + 5$ x_1, x_2 (b) Write the characteris $0(a) \text{ Obtain initial basic for } b$	$\begin{array}{l} x_2 \geq 0 \\ 5x_2 \geq 5 \\ 2 \geq 0. \end{array}$ stics of the easible solution	ution of t Destina	he followi	ng trans		problem u Supply	(10) using Vogel's
x ₁ - x ₁ + 5 x ₁ , x ₂ (b) Write the characteris 0(a) Obtain initial basic for method.	$\begin{array}{l} x_2 \geq 0 \\ \delta x_2 \geq 5 \\ 2 \geq 0. \end{array}$ tics of the easible solution of the sol	ution of t Destina	he followi tion	ng trans			(10) using Vogel's
x ₁ - x ₁ + 5 x ₁ , x ₂ (b) Write the characteris 0(a) Obtain initial basic for method.	$\begin{array}{l} x_2 \geq 0 \\ \delta x_2 \geq 5 \\ 2 \geq 0. \end{array}$ tics of the easible solution of the sol	ution of t Destina	he followi tion	ng trans		Supply	(10) using Vogel's
$x_1 - x_1 + 5$ x_1, x_2 (b) Write the characteris $0(a) \text{ Obtain initial basic formethod.}$ Origin O_1 O2	$x_{2} \ge 0$ $5x_{2} \ge 5$ $2 \ge 0.$ $x_{2} \ge 0.$ $x_{2} \ge 0.$ $x_{2} \ge 0.$ $x_{1} \ge 0.$ $D_{1} = \frac{13}{7}$	ution of t Destina D ₂ 15 11	he followi tion D ₃ 16 2	ng trans		Supply	(10) using Vogel's
$x_1 - x_1 + 5$ x_1, x_2 (b) Write the characteris $0(a) \text{ Obtain initial basic formethod.}$ Origin O_1 O_2 O_3	$x_{2} \geq 0$ $x_{2} \geq 5$ $2 \geq 0.$ stics of the easible solution D_{1} 13 7 19	ution of t Destina D ₂ 15 11 20	he followi tion D ₃ 16 2 9	ng trans		Supply	(10) using Vogel's
$x_{1} - x_{1} + 5$ x_{1}, x_{2} (b) Write the characteris $0(a) \text{ Obtain initial basic formethod.}$ Origin O_{1} O_{2} O_{3} Demand	$x_{2} \ge 0$ $5x_{2} \ge 5$ $2 \ge 0.$ easible solution D_{1} 13 7 19 14	ution of t Destina D ₂ 15 11 20 8	he followi tion D ₃ 16 2 9 23	ng trans		Supply	(10) using Vogel's
$x_{1} - x_{1} + 5$ x_{1}, x_{2} (b) Write the characteris $0(a) \text{ Obtain initial basic formethod.}$ Origin O_{1} O_{2} O_{3} Demand	$x_{2} \geq 0$ $x_{2} \geq 5$ $2 \geq 0.$ stics of the easible solution D_{1} 13 7 19	ution of t Destina D ₂ 15 11 20 8	he followi tion D ₃ 16 2 9 23	ng trans		Supply	(10) using Vogel's
$x_{1} - x_{1} + 5$ x_{1}, x_{2} (b) Write the characteris $0(a) \text{ Obtain initial basic formethod.}$ Origin O_{1} O_{2} O_{3} Demand	$x_{2} \ge 0$ $x_{2} \ge 5$ $2 \ge 0.$ Strics of the easible solution of the eas	ution of t Destina D ₂ 15 11 20 8	he followi tion D ₃ 16 2 9 23	ng trans		Supply	(10) using Vogel's
$x_1 - x_1 + 5$ x_1, x_2 (b) Write the characteris $0(a) \text{ Obtain initial basic formethod.}$ Origin $(b) \text{ Explain the concept}$ (b) Explain the concept 1. Determine the optime following information allowed: Job : A	$x_{2} \ge 0$ $x_{2} \ge 5$ $z \ge 0.$ Strics of the easible solution D_{1} D_{1} 13 7 19 14 of EOQ and an sequence on on process B 8 3 7	ution of t Destina D_2 15 11 20 8 and draw t ce of jobs essing tim C 7 2 5	he followi tion D_3 16 2 9 23 he graph of that minime on mach D 4 5 11	ng trans	e total ela ven in hou F 8 4 6	Supply supposed time ars and pase G 7 3 12	(10) using Vogel's

Activity	Immediate Predecessor	Estimated duration (days)				
Activity	Fledecessol	Optimistic	Most likely	Pessimistic		
А		1	1	7		
В		1	4	7		
С		2	2	8		
D	А	1	1	1		
E	В	2	5	14		
F	С	2	5	8		
G	D, E	3	6	15		
Н	F, G	1	2	3		
,	ERT network and fin	-	1 0 1			
ii) what dura	tion will have 95%	confidence for pi	roject completio	DII !		

A project consists of eight activities with the following relevant information:

22.
